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LElTER TO THE EDITOR 

Description of phases in a film-thickening transition 

D B Abraham and J De Conincki 
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG, UK 

Received 23 December 1982 

Abstract. Several criteria are discussed for a phase transition from partial to complete 
wetting in binary mixtures and their analogues. These criteria are based on order para- 
meters and mechanical stability. A further geometrical description of the phase transition 
is given. 

Recently the phenomenon of surface film thickening, which was proposed by Cahn 
(1977) on phenomenological grounds, has been revealed in an exactly solvable 
statistical-mechanical model of a phase transition in a binary mixture (Abraham 1980). 
This model is based on a lattice gas and thus has a magnetic analogue for domain 
walls. The typical picture is that we have a mixture of two components a and b which 
separates at low enough temperatures into an a-rich phase and a b-rich one, denoted 
A and B respectively. Let the bulk phase be pure A and suppose that one face, which 
we shall call the wall, wets component b differentially. Then we have a low-temperature 
structure with a thin surface phase C, separating the wall from the bulk phase A. At 
a definite temperature, depending on the strength of the differential wetting, we have 
a transition to a new structure with a thin phase C, separating the wall from phase 
B; this film of B is of infinite thickness in principle and is followed by the bulk phase 
A. We expect the A-B interface to be unaffected by the boundary. The situation 
described above is also called a transition from partial to complete wetting. It may 
be characterised at a bulk level by the phenomenological Young equation (Cahn 1977, 
Antonov 1907, Rowlinson and Widom 1982) 

(JAB COS e = - u B W  (1) 
where 8 is the contact angle, (TAB is the A-B surface tension and uiw with i = A, B is 
the wall tension. The mechanical origin of (1) is quite obvious, but it needs rigorous 
justification since at the point of film thickening, characterised by 8 = 0, bulk thermo- 
dynamic concepts of surface tension and contact angle may well not apply (Jamieson 
1982). 

In this letter we report that the exact phase transition condition in the planar 
model of Abraham (1980) is precisely of the form (1) by evaluating the two wall 
tensions, not both previously known. This phase transition condition was originally 
obtained from the density profile; no information was obtained either about the 
geometry of the phases C, and C, or whether the wetting film B is composed of 
small or large droplets. 
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Several authors (Burkhardt 1981, Chalker 1981, Chui and Weeks 1981, Hilhorst 
and van Leeuwen 1981, Vallade and Lajzierowicz 1981) showed that the planar 
film-thickening transition could be modelled by an Onsager-Temperley string (Tem- 
perley 1952). Here the bulk phase A is bounded on the wall side by a surface with 
no re-entrants which is specified uniquely by its distance y i  from the wall at each point 
i of a rectangular grid which represents the wall. The energy of a configuration is 
given by 

(2) E = 27 C Iyi - Y i + l I  

with y i  real, non-negative. The canonical probability of a configuration is 

Equations (2) and (3) can be obtained as the isotropic limit of the Ising model 
(Temperley 1952). But for phenomena on the scale of the correlation length, a suitable 
choice of 7 in (2) and (3) reproduces exactly the results for the isotropic planar Ising 
model (Abraham and Reed 1974, 1976, Abraham and Smith 1982). 

Equation (3) is evidently associated with a Markov process. This fact is now used 
to elucidate the structure of bubbles by appealing to the theory of recurrent events. 
This structure changes dramatically on passing through the phase transition. 

Let 

Px = P{yx+,= O b , =  0) (4) 

and define a generating function by 
m 

1 
G(z)  = P x z x .  

On the other hand, let Qx be the probability that the first return to y = 0 occurs after 
x steps and let 

m 

1 
H ( z )  = Q,z '. 

It follows that 

H ( z )  = G(z) / ( l  +G(z) ) .  (7) 

Two cases are distinguished by the limiting be..aviour o H ( z )  as z + 1. 
(I) lim H ( z )  = 1. By the Borel-Cantelli lemmas (Feller 1971) the event { y x  = 0) 

occurs for infinitely many x .  The mean length between two neighbouring returns is 
H'( 1); this is the mean droplet size. 

(11) lim H ( z )  < 1 : with probability one { y x  = 0) occurs only finitely many times: we 
have a finite number of macroscopic drops at the wall. 

An order parameter can be defined by 

l N  
N - m N  1 

p = Iim - 8 ( x i ) .  

This should vanish in case 11, but be non-zero in case I. 

at each edge. The growth of the recurrence interval with L can be studied. 
We also consider the case of a finite channel with 0 s y i  s L for all i and attraction 
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All our results come from the eigenvalue problem associated with transfer kernels 

(9) 
m 

Aq5 (x) = I e-2T1x-y'q5 (y ) dy + U  e-2""'q5(0) 
0 

and 

The technique of solution is to convert (9) and (10) to Schrodinger equations with 
appropriate boundary conditions using the identity 

(11) 

The results for (9) depend on 7 -7,(a) where ~ , ( a )  = 1/2a: when T > ~ , ( a )  there is a 
unique maximum eigenvalue 

A, = 4ff '7/(4a7 - 1) (12) 

q5m(x) = 2K" exp(-K,x) (13) 

K, = (2U7 - 1 ) / U .  (14) 

G( .~ )=[z / ( l - z ) ]C+A(z )  (15) 

H'(1)= 1 +7 , (a ) /2 (~  - T C ( U ) )  (16) 

($/ax2 -472) e-2+1"-Yl = -47S(x -y) .  

with eigenvector 

and 

It can be shown that 

where C = 2(7 - 7,(a))/(27 -7,(a)),  A(1) C a and A'(1) C a. Thus H(1) = 1 and 

and we have case I. The order parameter is p = 4Kk. When 7 <7,(a) ,  (9) has a 
continuous spectrum and a simple calculation shows that G ( l ) < a ,  so that case I1 
obtains: the drops at the wall are macroscopic and finite in number and the order 
parameter vanishes (as 1/N as N + a). 

We now point out an adhesion phenomenon for the channel of finite width L. Let 
&(a) denote the partition function with a = b. We define an incremental free energy 
per unit length of channel by 

f"(L) = -1imN-l log(ZL(a)/Z,(a)) (17) 
and we can show that for L/a >> 1 

Thus below the roughening transition there is long-ranged atfraction between the 
edges of the channel. For 7 > ?,(a) one might anticipate an entropic repulsion of the 
channel walls, but this is not so. 

We now turn to a discussion of the Cahn detachment criterion. The partition 
function for a finite planar Ising lattice wrapped on a cylinder with fields h l  and h2 
applied at opposite ends is 
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where 

Z , =  n *[e”””’A 1 (U M z b  1 + e  I ( W ) B Z ( W ) I  (20)  
-”B 

wss&q* 

with 

A,(w) = eK(cosh 2/17 -sinh 2h7 cos w )  cos(S*(w)/2) ePK sinh 2/17 sin w sin(S*(w)/2), 

B,(w) = eK(cosh 2/17 -sinh 2/17 cos w )  sin(S*(w)/2) 

(21) 

(22) -K -e sinh 2/17 sin w cos(S*(w)/2). 

The variable x *  is defined by 

exp(2x *) = coth x .  

cosh y ( w )  = cosh 2K cosh 2K* -COS w 

sin S * ( w )  = sinh 2K* sin w/sinh y ( w )  

S& = {U E [O, T ] ,  exp iMw = ~ 1 ) .  

(23) 

The functions y ( w )  and S * ( w ) ,  originally defined by Onsager (1944), are given by 

(24) 

with y 5 (O), and 

(25) 

with S * ( T )  = 0. The products are taken over the sets 

(26) 

These results generalise those of Au-Yang and Fisher (1975) which are restricted 

Suppose / I 2 +  co, but that / I l  = kaK with O c a  < 1. The incremental free energy 
by sgn h l h 2 =  + l .  

for the ‘plus’ phase with surface field aK is (McCoy and Wu 1967) 

f++(a ,  7) = ( 4 ~ ) ~ ’  dw log A2(w) .  (27) 

When the surface field is -aK there is an additional term 

f+-(a, 7) =f++(a, T ) - U ( a ) .  (28) 

(29) 

Let 
2 K  w = e 

when w > 1 ; then U ( a )  is given by 

(cosh 2K -cosh 2aK)lsinh 2K 

cosh U (U  ) = cosh 2(K - K *) + 1 - ( w + 1 / w ) / 2. (30) 

The point w = 1 defines the transition temperature TR(a). For w < 1, or equivalently 
T > TR(a), we have 

v ( a )  = 2(K -K*) .  (31) 
This is the usual Onsager surface tension (Onsager 1944, Fisher and Ferdinand 1967) 
between pure phases. Returning to (28), for T < TR(u)  we have v ( a )  <2(K -K*)  = 
TAB with equality at T = TR(a), confirming the Young rule phenomenology alluded 
to above. It should be pointed out that this picture is not entirely felicitous on a 
lattice outside the scaling region because a contact angle cannot be defined in an 
obvious way. But Pandit et a1 (1982) have shown that the same criterion can be 
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obtained from the Wulf construction (Wulf 1901, Herring 195 1); this construction 
does not have a rigorous basis in general. 

J De Coninck wishes to thank the British Council, the Oxford University and the 
Ministere de 1’Education Nationale et de la Culture franGaise (Administration des 
Relations Culturelles et Internationales) for financial support. 
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